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Abstract. We studied in this paper the effect of nonlinear interaction on the PD of a one-
dimensional Kronig–Penney chain. In the quasi-ballistic regime (L � (2kF )−1 � λ (localization
length)), an attractive nonlinear potential leads to a smooth peak with an oscillatory shift in its
position, while for repulsive potentials the peak becomes sharper and moves towardsπ . In the
quasi-metallic regime ((2kF )−1 � L � λ), the uniform PD becomes peaked as we increase the
nonlinear potential. Depending on the sign of the nonlinear potential, this peak moves either away
from or closer toπ . In the strong disorder regime, the nonlinearity plays an identical role to
disorder. It was found that the overall effect of nonlinear interaction in the mixed disorder case can
be interpreted as a superposition of those for potential barriers and wells treated separately. Further
results and discussion are also provided.

1. Introduction

The phase distribution (PD) of complex reflection amplitudes has been shown to be strongly
related to the transport properties of disordered systems [1–4]. Two decades ago, several studies
on one-dimensional (1D) disordered systems suggested that the random phase model supported
the scaling theory of localization [5–8]. However, Lambertet al [4] examined in detail the PD
in randomly distributedδ-potentials both in the Kronig–Penney and the tight-binding model
and found it to become strongly peaked at the limit of a large disorder. This distribution was
also found both numerically [4] and analytically, using the invariant embedding approach [9],
to be doubly peaked atπ/2 and 3π/2 in the quasi-ballistic regime. These results have been
confirmed recently by Sen [10] for the tight-binding model, in which the connection between
these distributions and the scaling behaviour of the resistance was shown. However, these
investigations have considered only mixed disorder (i.e. the energy site is randomly generated
from a uniform distribution centred at the zero energy). A strong discrepancy has been found
recently [11] in the behaviour of the transmission between mixed disorder and disordered
potential barriers (wells). The behaviour of the transmission in disordered potential barriers
and wells has been shown to give rise to a compensation effect in the transmission in mixed
disorder [12]. This compensation will certainly affect the behaviour of the PD.

Therefore, some unexpected transport properties in some 1D systems can find their
explanation in the behaviour of the PD. Indeed, nonlinear (NL) 1D models have been shown
to exhibit delocalization [11, 13–15], instabilities and chaotic behaviour [16]. Although most
of these properties have been extensively studied, they remain open for further investigations
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and have not been analysed by the PD approach. In particular, the non-uniqueness of the
output wavefunction amplitude for a given input in the NL Schrödinger equation has certainly
great consequences on the shape of the PD which is expected to play an important role in all
phenomena based on phase coherence.

It is the purpose of this work to study the effect of NL interaction on the PD of the reflection
amplitude of 1D Kronig–Penney disordered systems. We have examined the PD for mixed
disorder as well as disordered barriers and wells, in different regimes of disorder. To avoid the
multistability in the NL systems we restrict ourselves to a uniquely defined situation where
the output is fixed and one is interested in finding the necessary input. We found in particular
a new characteristic length scale (discussed in section 3.1), in addition to that separating the
exponential decay of the transmission for smaller lengths from its power-law decay above this
length scale [11].

The paper is organized in the following way. In section 2, we set up the general model used
in studying the PD and provide the main expressions for determining the phase. In section 3, we
present our numerical results and discuss their physical interpretation in different regimes and
conclude in section 4 by summarizing our results and suggesting some future investigations.

2. Model

The model used in this paper is the Kronig–Penney model where the site potentials are
δ-potentials. This model is a continuous multiband model and describes better short-range
interactions than other models, such as the tight-binding model [17]. Furthermore, it
is easier to include external fields in this model than in the tight-binding model. We
consider a non-interacting electron of energyE moving through a linear chain ofδ-potentials
of strengthβn, wheren is the site position. In each site a NL interaction is included
to represent either a repulsive interaction (electron–electron interaction) or an attractive
interaction (electron–phonon interaction). The Schrödinger equation then reads{

− d2

dx2
+

∑
n

(βn + α |9(x)|2)δ(x − n)

}
9(x) = E9(x) (1)

where9(x) is the single particle wavefunction atx, βn the potential strength at thenth site,
α is the nonlinearity strength andE the single particle energy in units of ¯h2/2m wherem is
the free electron effective mass. For simplicity, the lattice spacing is taken to be unity in all
this work. The potential strengthβn is a variable acquired from a random distribution where
−W/2 < βn < W/2 for the mixed potentials case, 0< βn < W for the potential barriers case
and−W < βn < 0 for the potential wells case (W is the degree of disorder). The local nature
of the NL interaction in (1) does not stem only from its simplicity in numerical computation,
but also from a physical point of view that many of the interactions leading to nonlinearity
are of local nature, such as the on-site Coulomb interaction. From the computational point
of view it is more useful to consider the discrete version of this equation which is called the
generalized Poincaré map and can be derived without any approximation from (1). It reads
[18]

9n+1 =
[
2 cosK +

sink

k
(βn + α|9n|2)

]
9n − 9n−1 (2)

where9n is the value of the wavefunction at siten and k = √
E. This representation

relates the values of the wavefunction at three successive discrete locations along thex-axis
without restriction on the potential shape at these points, and it is very suitable for numerical
computations. An iterative approach is taken to solve (2). For our initial conditions we used
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the following values at sites 1 and 2:91 = exp(−ik) and92 = exp(−2ik). We consider here
that an electron has a wavevectorkF (at Fermi energy) incident at siteN + 3 from the right
(by taking the chain lengthL = N , i.e. N + 1 scatterers). The transmission and reflection
amplitudes (t andr) can then be expressed as

t = −2i exp(−ik(N + 3)) sink

9N+3 exp(−ik) − 9N+2
(3)

and

r = exp(−2ik(N + 3)) (9N+2 − exp(ik)9N+3)

9N+3 exp(−ik) − 9N+2
(4)

where the terms exp(−ik(N + 3)) and exp(−2ik(N + 3)), appearing respectively in the
transmission and reflection amplitudes, originate from the fact that the electron is incident
at siteN + 3 with an incident phase−k(N + 3). Therefore, these fictitious phases are to be
disregarded. From (3) and (4) the phases of the transmission and reflection amplitudes depend
only on the values of the wavefunction at the end sites,9N+2, 9N+3, which are evaluated from
the iterative equation (2). Without any loss of generality, we restrict ourselves in this work to
the study of the PD of the reflection amplitude.

3. Results and discussion

In this section, we use three kinds of disorder: mixed disorder, potential barriers and potential
wells and we investigate the NL potential effect on the PD for each of these disorder types
separately. We study the NL potential effect on the PD in three different regimes: the quasi-
ballistic regime (L � (2kF )−1 � λ, whereλ is the localization length), the quasi-metallic
regime, also called weakly localized regime, ((2kF )−1 � L � λ) and the strong disorder
regime (W → ∞). In the later regime we choose the sample length so large that the PD
becomes stationary. All the distributions and averages are obtained for 104 realizations. We
note here that to the best of our knowledge no work has been undertaken for the PD in the case
of disordered barriers or wells (although some behaviours in mixed disorder can be understood
on the basis of these two types of disorder). Neither has the NL influence on the PD in these
three kinds of disorder been investigated. However, with our model we confirm the tight-
binding and invariant embedding results obtained previously in the linear mixed disorder case
[4, 9, 10], that is a doubly peaked distribution atπ/2 and 3π/2 in the quasi-ballistic regime and
nearly uniform distribution in the quasi-metallic regime. For strong disorder the distribution
has two peaks which tend to merge into a single peak and become sharper as we increase the
disorder, and whose asymptotic position (φ∞) depends only on the incoming electron energy.
In this later case, it has been found previously [2, 4, 10] that the phase of the reflection behaves
asφ∞ = 2 cos−1(E/2) (the energyE is 2 cos k for a lattice parameter taken to be unity).
In the case of a Kronig–Penney model withδ-potentials, the incoming energyE behaves like
k2 and we easily obtain the energy dependence of the PD peak given byφ∞ = 2

√
E . We

confirmed numerically this energy dependence and also the non-dependence ofφ∞ on other
parameters. We point out here that the PD is peaked atπ/2 for an energy at the band centre of
the corresponding periodic system while it is peaked atπ for an energy near the band edge.

3.1. Quasi-ballistic regime

In this regime we choose the parametersE = 10−3,W = 0.03 andL = 5 which satisfy the
conditionL � (2kF )−1 � λ, where the mean free path(2kF )−1 is about 17 and the localization
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Figure 1. Phase distribution (in units of 2π ) for E = 0.001, W = 0.03, L = 5 and different
nonlinearity strengths (|α| = 0, 0.01, 0.05, 0.1 and 1). For: mixed disorder (a)α < 0, (b)α > 0;
potential barriers (c)α < 0, (b)α > 0; potential wells (e)α < 0, (f) α > 0.

lengthλ is close to 100 for mixed disorder, 70 for disordered barriers and 140 for disordered
wells (these lengths are measured in units of the lattice parameter taken here to be unity).

In figure 1 we show the PD for different attractive (figures 1(a), (c) and (e)) and repulsive
(figures 1(b), (d) and (f)) NL potentials and for the three kinds of disorder. In the case of
mixed disorder (figures 1(a) and (b)) we notice that the PD is doubly peaked nearπ/2 and
3π/2 in the absence of nonlinearity, while in disordered barriers and wells, only a single
peak appears near 3π/2 andπ/2, respectively. Therefore the results obtained previously in
this regime [4, 9, 10] cannot be extended to an arbitrary type of disorder and the superposition
effect of these two types of disorder observed in the case of mixed disorder for the transmission
properties [12] is also observed in the PD behaviour. In the presence of attractive (repulsive)
NL potential, the peak at 3π/2 (π/2) disappears in the mixed disorder case, while the other
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Figure 2. Transmission coefficient against length for the same parameters as in figure 1 in the mixed
disorder case and for different nonlinearity strengths (|α| = 0, 0.01, 0.05, 0.1 and 1). (a)α < 0,
(b) α > 0.

peak is shifted towardsπ . As we increase the NL strength for repulsive potentials the peak
at 3π/2 converges towardsπ . For attractive NL potentials, the peak position at first gets
closer toπ and then moves away from it as we increase the strength of the NL potential.
Thus repulsive and attractive NL potentials play different roles regarding their effects on the
PD. This non-monotonic behaviour in the case of attractive NL potentials is also observed
in disordered potential barriers (see figure 1(c)) and wells (figure 1(e)), while the monotonic
behaviour observed in the mixed disorder case for repulsive NL potentials is also seen in the
case of disordered barriers (figure 1(d)) and wells (figure 1(f)).

The oscillating behaviour of the PD peak position for attractive NL potentials gives rise,
in this regime, to a Bloch-like behaviour of the transmission against length (see figure 2(a)),
while the monotonic shift of the PD peak towardsπ for repulsive NL potentials enhances the
decay of the transmission as a function of the length (figure 2(b)). This can be explained with
the help of the strong correlation between the position of the PD peak and the transmission
coefficient. Indeed a convergence of the peak in the PD towardsπ seems to lead to a strong
decay of the transmission while peaks near zero or 2π seem to be related to a weaker decay or
even an enhancement of the transmission.

Figure 2(b) shows that by increasing the NL repulsive potential strength we have already
moved away from the quasi-ballistic regime (the localization length estimated from the slope
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of the transmission against length forL → 0 becomes smaller than the lattice parameter and
the conditionL � (2kF )−1 � λ will not be satisfied). Thus, in addition to the disorder
effect which decreases the transmission, the repulsive NL potentials lead to a chain composed
mostly of barriers, which strengthens the transmission decay corresponding to the stronger
growth of |9|2, again enhancing this decay. As we increase the NL strength the number of
effective potential barriers increases while the potential wells tend to disappear. In this case,
the disorder combined with repulsive nonlinearity makes the transmission decay stronger than
the exponential decay.

When attractive NL potentials increase, their negative sign strengthens the effective
potential wells (βn + α|9|2 from (1)) while the effective potential barriers tend to disappear
from the chain. This is in contrast to the repulsive NL case. However, since the transmission
decay is slower in the disordered potential wells in comparison to potential barriers [19], a
competition between the easier transmission in the effective potential barriers of small strength
(remaining in the chain) and the slow decay of the transmission in the effective potential
wells makes the overall transmission coefficient (as well as the wavefunction amplitude|9|2)
oscillate as shown in figure 2(a). This oscillatory-like behaviour disappears when the effective
potential barriers disappear from the chain (the chain becomes composed only with effective
potential wells) leading to the strong enhancement of the transmission decay, as in the case
of repulsive NL potentials described above (|9|2 will grow strongly and the nonlinearity
contributes to the transmission decay). As we increase the attractive NL strength, a more rapid
increase of|9|2 takes place. Hence the period of the oscillating cycle decreases, as seen in
figure 2(a). The amplitude of this oscillatory behaviour decreases as the length increases up
to a characteristic length scaleLc. AboveLc the NL potential strengthens the disorder effect
(this length corresponds also to the disappearance of the effective potential barriers from the
chain). The characteristic lengthLc decreases as the NL strength increases. Therefore, there
are two characteristic length scales in the presence of nonlinearity: one (Lc) characterizing
the oscillatory-like behaviour of the transmission in the quasi-ballistic regime and the other
separating its exponential decay from its power-law decay for larger length scales, studied in
detail in our previous work [11].

3.2. Quasi-metallic regime

In this regime, we chooseL = 10, W = 1 andE = 1. These parameters satisfy the
quasi-metallic condition(2kF )−1(= 0.5) � L(= 10) � λ (≈100 for mixed disorder,≈70
for disordered potential barriers and≈140 for disordered potential wells). In this case, the
PD is nearly uniform in the mixed disorder case, as shown in figure 3 and in agreement
with the tight-binding results [10]. In the case of disordered potential barriers and wells,
this distribution is slightly peaked near the edges (0 or 2π ). As we increase the attractive
NL potential (figure 3(a)) a peak appears aroundπ and moves towards higher phases while
becoming sharper. For repulsive NL potentials (figure 3(b)) the peak shifts towards smaller
phases (the peak forα = 2 appears near 2π because we plotted the phase between 0 and 2π ).
A similar behaviour was found for potential barriers and wells (not presented here). We point
out here that in these cases, when the NL potential has the opposite sign to the site potential,
then the distribution flattens as the NL potential increases. This then leads to an enhancement
of the transmission because the effective potential strength in (1) decreases [11]. When the
NL potential becomes larger than the site potential, the effective potential starts increasing and
gives rise to a sharper PD peak and a stronger exponential decay of the transmission.

We note here also, that for attractive NL potentials, the same finite size oscillatory-
like behaviour described above in the quasi-metallic regime appears in the transmission.
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Figure 3. Phase distribution (in units of 2π ) for E = 1,W = 1,L = 10 and different nonlinearity
strengths (|α| = 0, 1 and 2) in the mixed disorder case: (a)α < 0, (b)α > 0.

The characteristic lengthLc defined above is about 5 forα = −1 while it is about 20 for
α = −0.1. On the other hand, for attractive NL potentials the transmission decays rapidly for
any arbitrary strength of the nonlinearity.

3.3. Strong disorder regime

From previous works [2, 4, 10] the strong disorder regime is reached when the two distribution
peaks (appearing for the mixed disorder case when increasing the disorder strength) merge into
a single, sharper peak. The PDs of concern to us in this regime are of a stationary nature, that
is they are obtained for large sizes and are not affected by any further increase in the system
length. As discussed previously, this peak is affected only by the energy in the mixed disorder
case. However, this situation may not be the same for other types of disorder and in particular
a compensation effect can occur for disordered potential barriers and wells. Indeed, as shown
in figure 4, the peak is slightly shifted to higher phases in the case of disordered barriers. This
peak becomes sharper as we increase the disorder strength and saturates at about 1.62π for
infinite disorder strength. For disordered potential wells, the shift in the distribution peak is
reversed (shifts to smaller phases) and saturates at approximately 1.64π . Hence there seems
to be a compensation between the effects of potential wells and barriers, resulting in the mixed
case, in the non-dependence of the peak position on disorder strength.



6204 N Zekri and H Bahlouli

0.7 0.8 0.9 1.0
0

20

40

60

80

400

600

800

 W = 10

 W = 10 2

 W = 10 3

 W = 10 4

Oc
cu

re
nc

e

Phase (un its o f 2 ππ)

1 2 3 4

0.82

0.83

0.84

0.85

0.86

P
 e

 a
 k

  P
 o

 s
 i 

t i
 o

 n
 

L  o  g  1 0   (   W   )

Figure 4. Phase distribution (in units of 2π ) in the case of barriers for linear system withE = 1,
L = 1000 and different disorder strengths (W = 10, 102, 103 and 104). The insert represents the
peak position against disorder.

In figure 5 we show the PD for the mixed case for different NL potential strengths. Figure 5
shows that the NL potential plays the role of disorder. This is in the sense that it makes the peak
sharper while its position is only slightly affected and for very strong NL repulsive (attractive)
potentials it approaches the limiting positions observed in the strong disorder case for potential
barriers (wells). In this regime and in the strong nonlinearity case, the transmission becomes
vanishingly small and the effective potential will be either attractive or repulsive (dominated
by the NL potential). This situation corresponds to that of figure 4 for potential barriers
(and the equivalent one for potential wells). For disordered potential barriers the attractive
NL flattens the distribution peak giving rise to a uniform distribution in agreement with the
delocalization effects found for the transmission in our previous work [11]. For repulsive NL
the distribution peak shifts towards smaller phases and seems to saturate around 1.64π . The
peak becomes sharper as we increase the NL potential strength. For disordered potential wells
the situation is reversed, that is for attractive nonlinearity the peak moves to higher phases and
seems to saturate around 1.62π . Again it becomes sharper as we increase the NL potential.
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Figure 5. Phase distribution (in units of 2π ) for E = 1, W = 100, L = 10 000 and different
nonlinearity strengths (|α| = 0, 10 and 100) in the mixed disorder case: (a)α < 0, (b)α > 0.

For repulsive NL potentials the distribution peak flattens and corresponds to an enhancement
of the transmission. Therefore, in agreement with our previous results on the transmission
[11, 20], it seems that a flattening of the distribution gives rise to a delocalization effect when
the linear and NL potentials are of opposite signs. However, if they are of the same sign it
leads to an enhancement of the localization. The NL effects on potential barriers and wells
are not shown here to avoid a lengthy paper. Therefore, we conclude from this work that a
uniform PD cannot be taken as a signature of localization as claimed in previous works [5–8].
On the basis of our present results, strong localization occurs when the PD becomes sharply
peaked and moves towardsπ , while in the case where this distribution become nearly uniform,
it means a delocalization effect.

4. Conclusion

We have presented in this paper the effect of NL interaction on the PD and the transmission
properties of a 1D Kronig–Penney system in three different regimes: quasi-ballistic regime,
quasi-metallic regime and strong disorder regime. Our results in the mixed disorder case seem
to be a superposition of disordered potential barriers and wells. We found that in the quasi-
ballistic regime an attractive NL potential leads to an oscillatory shift of the PD peak position
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giving rise to a Bloch-like behaviour of the transmission. The transmissive properties, in the
presence of attractive NL potentials have a second characteristic length scaleLc in addition
to that separating the exponential from the power-law decay of the transmission, described in
our previous work [11]. Repulsive NL potentials, on the other hand, seem to make the PD
peak sharper and shift towardsπ . In the quasi-metallic regime, the uniform distribution in
the mixed disorder becomes peaked and moves in a direction dependent on the sign of the
NL potential. Finally in the strong disorder regime and for mixed disorder, the nonlinearity
plays an identical role to disorder, in the sense that the distribution peak becomes sharper
and seems to saturate to a limiting position for very strong nonlinearity. For disordered
potential barriers or wells, the peak flattens out if the site potential and the NL potential
have opposite signs. This gives rise to a delocalization effect, in agreement with our previous
results on the effect of NL on the transmissive properties of these systems [11]. However, an
extensive characterization of the transmissive properties of 1D systems by their PD should be
completed in order to understand some unexpected behaviours in the transmission, such as the
multistability, the chaotic behaviour for NL systems and the asymptotic exponential decay of
transmission for amplifying systems [21]. Some of these interesting topics will be the subject
of some forthcoming investigations.
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